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Motivation Proposed Framework Results
In contrastive representation learning, data representation is trained so that We formalize the encoding process with an input-dependent Trained P(T|X), where T is a cropping Augmentation

it can classify the image instances even when the images are altered by random augmentation channel and maximize the M1 I(X; Z)

augmentations. However, depending on the datasets, some augmentations . . ' ' .
can damage the information of the images beyond recognition, and such 0 @ e 6 |
augmentations can result in collapsed representations. We present a partial =i Ao nned . = i . . . ‘ - H . . - -
solution to this problem by formalizing a stochastic encoding process in

which there exist a tug-of-war between the data corruption introduced by Proposition 1. Suppose that P(Z | T'(X)) = Cp exp(BS(Z, h(T(X)))) where S : Z x Z — Ris
. . . a similarity function on the range of Z and C is a constant dependent only on 3. Then
the augmentations and the information preserved by the encoder. We show
that, with the infoMax objective based on this framework, we can learn a T2 = By |Tog Bimiix ! exp(BS(Z, h(T'(X))) ” 2 | Linear Classification Protocol (Regional MNIST)
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data depenfjent distribution of augmentations to avoid the collapse of the o o v, x[exp(BS( .( 09))] | = o roe— — SmCLR(oraclo)

representation. Also, when P(T|X) is uniformly distributed on a compact set of view-transformations, the mean Projection Head  0.95505 £ 0.0023  0.9552 + 0.0037  0.3156 £ 0.0044  0.5144 =+ 0.011
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T' (x,) T(x,) Difference from previous Ml based approach SimCLR(Oracle) applies the representation map trained with uniform
- - Previous M| approach uses variational approximation of cropping augmentation to the crop obtained from the true digit location
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T I(T(X); T' (X)) with equally distributed T and T’ that holds for any
: aE 0 %0 encoding map and any f Linear Classification Protocol (MNIST)
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: : : : ‘B Our approach uses equality relation and proposes a formulation that _ . —
: g y v g * - connects SImCLR and Ml with difference resulting only from Jensen’s Notice that for t_)Oth Regional MNIST and MNIST, competitive
: : : inequality representation is learned at projection head.
R Connection to Uniformity and Alignment Uniformity of the representation
On the dataset like the one we present above(Regional MNIST), identifying the In the equation (2), the Numerator H(Z|X) and the denominator —
crop T’ (x) with T(x) in the encoding space for image x would force x, to be H(Z) mathematically corresponds directly to the alignment term and " 7~ e
identified with x, via transition-rule of similarity the uniformity term in Isola et al (2020 ICLR). oas f \
, . Algorithm N o
T (e)~T () = T' (i)~ T(x) N | =
0 Alternate training of P(T|X) and Encoder with the goal of optimizing the M| A S s o Mo T e
' - - - : - - - Left: The scatter plot of 2 dimensional representations trained together with P(T|X).
‘ Algorithm 1 Contrastive Representation learning with trainable augmentation Channel(CRL-TAC) . . . . . . .
0.2 o . Right: The scatter plot of 2 dimensional representations trained with uniform P(T|X).
(LEFT)Realization of 200 instances of Require: A batch of samples {2}, an encoder model hy : 2 — 2, the number of transformation
< o 50 dimensional representations samples m, a model for conditional random augmentation distribution 2 — P(T'|z,n) 04 4
Q" achieved by SimCLR on this example I+ for each iteration 7 do
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Coordinate indices | Extra Regularization term of to increase H(T'|X) worked in favor of both performance and | Cgordizﬁate 3|°ndicdés



